Pour faire suite à l’article d’avant-hier, celui sur la déformation de notre vision du monde que cause les outils que l’on emploie, je voulais vous parler de la recherche textuelle sur la plateforme SQL Server. Désolé si certains sont déçus mais oui c’est un point technique 🙂
Alors pourquoi faire le lien entre cette problématique et la recherche textuelle ?
Dans une base de données on a une obsession : tout mettre dans des tables composées de lignes et des colonnes. Naturellement dans ce modèle l’unité de traitement minimale est la cellule, l’intersection d’une ligne et d’une colonne.
Très bien, mais que faire quand la cellule contient une entité unique, comme demandée par la modélisation, mais que cette entité se décompose de manière complexe ? Je pense par exemple à un descriptif produit ou un commentaire client. Comment exploiter une information humaine, un avis, une description, comprise dans une chaîne de caractère, avec des outils qui ne savent pas vraiment travailler à ce niveau de granularité ?
Et bien on fait comme on peut, mais en général ce n’est pas très joli !
Pour parler d’une situation précise, je monte actuellement une solution décisionnelle qui stocke et analyse pratiquement toutes les informations concernant le parc informatique d’un grand groupe. On pourrait penser que sur ce domaine fonctionnel on n’aurait pas de surprises dans les données: que du technique ou du numérique. Et bien détrompez-vous, remonter l’ensemble des applications installées sur les postes, sur un parc de 30’000 machines, dans 10 langues (vive l’Unicode), ça donne 3 millions de lignes à brasser par jour…
Pour vous donner un exemple : j’ai environ 1500 valeurs distinctes par jour d’applications qui contiennent le mot ‘Microsoft’, dont 500 qui contiennent le mot ‘Office’… Là dedans je dois retrouver les différentes éditions d’Office 2003 et 2007 pour faire le suivi du licensing.
Miam !
Le minimum qu’on puisse dire c’est que j’ai un problème de qualité de données. L’approche que je préfère sur ce genre de problème c’est d’utiliser les outils décisionnels pour instaurer un cycle d’amélioration des données (Tip 131):
- On récupère tout dans le datawarehouse avec un premier cycle d’import
- On flag ce qui n’est pas bon / pas encore revu
- On génère des rapports pour que les opérationnels puissent corriger les systèmes sources et / ou proposer des nouvelles règles d’alimentation
- On implémente les changements, puis retour à l’étape 1
Bien ! Le problème c’est que pour faire l’étape 2 il faut pouvoir interagir sur la donnée : est-ce que mon descriptif d’application contient ‘Office’ ? Enfin, est ce qu’il contient ‘%Office’, ‘Office%’, ‘% Office %’, ‘%Office%’… La différence ?
- ‘Office’ : le seul résultat qui passe c’est « Office »
- ‘%Office’ : « Office », « LibreOffice », « Microsoft Office »
- ‘Office%’ : « Office », « Office 2003 », « OfficeCracker »
- ‘% Office %’ : « Microsoft Office 2003», la subtilité est dans les espaces autour du mot
- ‘%Office%’ : toutes les possibilités
Presque facile pour Microsoft Office, mais pas pour Adobe et toutes les variations de flash, ni pour IBM, ni Mozilla, ni pour toutes les autres en fait…Et ‘0ffice’ ? ‘Offisse’ ? On peut les oublier pour des champs fournis par les éditeurs eux-même, mais pour une recherche dans des champs saisis à la main ?
Pour pouvoir traiter tous ces cas de figure on va utiliser des critères de recherche compliqués, conditionnels, qui impliquent des traitements unitaires multiples sur chacune des cellules les unes après les autres: les performances s’écroulent. En temps de réponse on passe de moins d’une seconde sur une table bien indexée à plusieurs minutes sur une recherche en ‘%…’. En fait c’est une particularité dans la manière qu’ont les bases de données relationnelles de stocker et traiter l’information qui force une lecture complète de la table à chaque fois.
On retrouve cette limite là dans tous nos outils :
Ça plus le fait qu’il faille créer toutes les règles de gestion une par une de manière exhaustive. Vivement que les IA viennent nous filer un coup de main !
Malheureusement pour le moment il n’existe pas de solution magique, une recherche textuelle étendue sur une base de données relationnelles classique aura forcément un coût important en performance et/ou un résultat foireux. La prochaine fois que vous verrez un site web équipé d’un moteur de recherche bancal, ne cherchez pas pourquoi… Et c’est là que le bas blesse: à force de galérer avec ce type d’opérations on ne les propose plus, on ne les implémente plus, et on en vient à penser qu’elles ne sont pas possibles.
Pourtant Google y arrive, et sur des volumes de données autrement plus important! C’est d’ailleurs pour ça que pour l’avenir j’ai espoir dans la prochaine génération de bases avec moteur de stockage en colonne / vertical. Va bien y avoir un génie quelque part qui va nous révolutionner les recherches textuelles là-dessus!
WordPress:
J’aime chargement…