Revue : I <3 Logs (I Heart Logs) par Jay Kreps

Dans mon chemin d’apprentissage vers les nouvelles architectures de données, j’ai croisé ce petit bouquin rapide de Jay Kreps, et je ne peux que le recommander.

Jay Kreps c’est l’un des inventeurs d’Apache Kafka, quand il était encore chez Linkedin, et depuis c’est le co-fondateur de Confluent, la société commerciale qui édite la plateforme open source. Alors oui, fatalement, il a un petit biais en faveur des plateformes d’intégration basées sur les logs, mais il a surtout une grosse expérience sur le sujet à partager.

Couverture : I heart Log

Evacuons tout de suite le reproche principal qui est fait à ce bouquin: il est court, très court. Vu son prix, il est vrai que ça le rend vraiment cher à la page. Mais pour moi c’est le condensé parfait des idées sous-jacentes au grand retour à venir du temps réel dans l’intégration de données (confère). Donc je lui pardonne son prix (et j’aime signaler au marché qu’il va dans la bonne direction grace à mes achats). Pas de problème si vous surveillez votre budget, direction le blog de Confluent qui dans ses articles reprend beaucoup du contenu du livre. C’est moins bien organisé, mais avec un peu de patience on remet tout dans l’ordre. Dans le cas contraire, je vous encourage vivement de casser la tirelire 😉

Morceaux choisis:

  • La différence entre « Physical Logging » (on log le résultat de l’opération, ex: le contenu de la ligne) et « Logical Logging » (on log l’opération, ex : la requête SQL)
  • Différence qui découle dans 2 architectures de centralisation des logs: le « Primary Backup Model » pour le « Physical Logging » (on écrit sur un master, on forward le résultat de l’écriture aux systèmes esclaves), versus le « State Machine Model » pour le « Logical Logging » (on log la transaction en amont, elle est dupliquée pour traitements sur tous les systèmes en aval). Chacun avec ses avantages et inconvénients
  • Tout ça découle de l’idée de dualité de l’information: tables vs événements, une notion qu’on retrouve en BI, lorsqu’on modélise un processus métier et qu’on peut choisir entre conserver le stock vs les transactions d’un processus métier
  • Cette idée va être structurante dans la construction d’un système de log centralisé, à savoir comment connecter chaque type de système source. Les logs issus des applications auront tendance à être logiques, ceux connectés directement sur les bases plutôt physiques
  • L’objectif de mettre en place un système de log centralisé étant bien sûr d’isoler chaque consommateur de chaque source, pour que chacun puisse vivre sa vie en bonne intelligence
  • Le fait de mettre en place un système centralisé de log implique le passage au temps réel: l’unité de traitement n’étant plus le batch (à savoir une fenêtre temporelle: 1h, 1 jour, 1 semaine) mais bien le log, manifestation d’une opération unitaire du processus
  • A ce titre, on peut alors s’interroger sur la possibilité de mettre en place du « Stream Analytics » (merci Microsoft de nommer les produits de manière aussi explicite ;)), c’est à dire le traitement des informations en continu, plutôt que via un ETL, pour les contextes décisionnels. Il est à noter qu’il a été prouvé mathématiquement qu’il est possible d’implémenter toutes les opérations considérées comme bloquantes (distinct, max, top…) en streaming via le windowing et le caching

Je recommande vivement!

I heart Logs, Jay Kreps (Amazon.fr)

Votre commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s